CARACTERIZAÇÃO PRELIMINAR DA BACIA HIDROGRÁFICA DO IGARAPÉ ILHA DO COCO NO SUDESTE PARAENSE

Alison Veloso da Costa Cunha
(E-mail: alisonveloso44@hotmail.com)

Estudando de Geotecnologias e Recursos Naturais na Amazônia Oriental/UNIFESSPA
Maria Rita Vidal
(E-mail: ritavidal@unifesspa.edu.br)

Professora da UNIFESSPA e Doutora em Geografia pela Universidade do Ceará
Abraão Levi dos Santos Mascarenhas
(E-mail: abraãolevi@unifesspa.edu.br)

Professor/Orientador da UNIFESSPA e Doutorando do Programa de Geografia Humana-USP

RESUMO

O objetivo da pesquisa foi analisar a morfometria da bacia hidrográfica do Igarapé Ilha do Coco, localizada no município de Parauapebas, Pará. A metodologia envolveu a obtenção da SRTM, delimitação automática da bacia utilizando-se a ferramenta Hydrogoly do ArcGis, cálculo dos atributos morfométricos e análise dos resultados morfométricos. A bacia em estudo apresenta área de aproximadamente 121,93km², o perímetro de 66,29km, comprimento da bacia de 20,17km, fator de forma(Kf) de 0,30, índice de circularidade(Ic) 0,35, coeficiente de compacidade(Kc) de 1,68, índice de rugosidade(Ct) de 0,40 e padrão de drenagem dendrítico. O comprimento do rio principal(L) apresenta 26,36km, e segundo a classificação de Strahler a bacia possua canais de 4ª ordem, na qual possuem 123 canais de 1ª ordem, 64 canais de 2ª ordem, 45 canais de 3ª ordem e 11 canais de 4ª ordem, totalizando 243 canais e comprimento total dos canais(Lt) de 152,85km. A frequência de rios(Fr) é de 1,99 canais km⁻ ², com densidade de drenagem(Dd) de 1,25km km⁻², textura de topografia(Tt) de 0,33 e coeficiente de manutenção(Cm) de 797,71m². O relevo apresenta altimetria máxima de 467m, mínima de 151m, média de 288m, amplitude de 316m e desvio padrão da amplitude altimétrica de 87m. A bacia em estudo apresenta baixa suscetibilidade à inundação, entretanto, vem apresentando problemas de inundação e alagamento, possivelmente por conta do intenso uso do solo, análise mais detalhadas poderão indicar as possíveis causas.

Palavras-chave: Análise morfométrica; hierarquia fluvial; manejo de bacia

1. INTRODUÇÃO

Os recursos hídricos desempenham papel fundamental para a sobrevivência do ser humano e no desenvolvimento de suas atividades (agropecuárias e industriais). Entretanto, a urbanização desordenada vem contribuindo para o processo de degradação ambiental em várias partes do sistema hidrográfico. Dessa forma, faz-se necessário o gerenciamento de bacias hidrográficas para garantir a adequação dos meios de exploração dos recursos naturais pelo homem, visando o desenvolvimento sustentável (LANNA, 2000).

Nesse contexto, as características físicas de uma bacia constituem elementos de grande importância para a avaliação de seu comportamento hidrológico, pois, ao se estabelecerem relações e comparações entre elas e os dados hidrológicos conhecidos, pode-se determinar, indiretamente, os valores hidrológicos em locais em que esses dados são desconhecidos (VILLLELA E MATOS, 1975).

Realizar a análise de uma bacia perpassa em adotar princípios sistêmicos e postura dialética na condução do entendimento de uma determinada bacia. A Bacia hidrográfica é um sistema que compreende um volume de materiais, predominantemente sólido e líquido, próximo à superfície terrestre por todos os processos que, a partir do fornecimento de água pela atmosfera, interferem no fluxo de matéria e de energia de um rio ou de uma rede de canais fluviais. Inclui, portanto todos os espaços de circulação, armazenamento, e de saídas da água e do material por ela transportado, que mantêm relação com esses canais. (RODRIGUES; ADAMI, 2009).

O estudo morfométrico de bacias hidrográficas é definido como a análise quantitativa das relações entre a fisiografia da bacia e a sua dinâmica hidrológica (SANTOS et al., 2012). Lindner et al. (2007), afirmam em sua pesquisa que os índices morfométricos são importantes pressupostos para a preservação de eventos hidrometeorologicos, como enchentes e estiagens. Dessa forma, o objetivo desse trabalho foi analisar a morfometria da bacia hidrográfica do Igarapé Ilha do Coco, localizada no município de Parauapebas, Pará.

2 METODOLOGIAS

2.1 Caracterização da área de estudo

O estudo foi realizado na bacia hidrográfica do Igarapé Ilha do Coco, na qual possui área de aproximadamente 121,93 km2, localizada no município de Parauapebas, região sudeste paraense, compreende o retângulo envolvente de 6°03'06" e 6°11'08" de latitude sul e 49°55'00" e 49°45'00" de longitude oeste. Faz parte da bacia do Tocantins e desemboca pela margem direita no rio Parauapebas (PARAUAPEBAS, 2018).

Segundo Siqueira, Aprile e Miguéis (2012), o município de Parauapebas está localizado na "Zona Tropical" e apresenta dois subtipos de clima, o de planícies e o de montanhas, ambos de acordo com a classificação de Köppen incluídos como clima "Am" tropical, quente e úmido, com precipitação elevada. A estação seca ocorre entre maio e novembro. No período de chuvas, regionalmente conhecido como "inverno", a precipitação pode alcançar 2800 mm e a umidade relativa do ar chega a ultrapassar 90%. A temperatura média ao longo do ano é de 29 °C.

2.2 Processamento dos dados SRTM

Os dados da imagem de Radar SRTM foram adquiridos junto à U.S Geological Survery (USGS), com equipamento de 1 Arc-Second que oferecem elevação global e faz cobertura mundial com resolução espacial de 30 m e elipsóide de referência WGS84, reprojetada para SIRGAS 2000. O processo de caracterização morfométrica da bacia hidrográfica foi desenvolvido no SIG ArcGis 10.3 (ESRI, 2013), através das extensões (plugins) Spatial Analyst Tools e Hydrology. A licença de o programa estar sob a responsabilidade do CTIC-Unifesspa.

O processamento dos dados SRTM foi realizado conforme Dias et al. (2004), onde ocorreram as seguintes etapas: preenchimento de depressão ("fill"); direção de fluxo ("flow direction"),fluxo acumulado ("flow accumulation") e delimitação de bacia ("Watershed") (Figura 1).

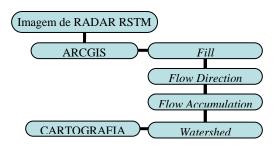


Figura 1. Fluxograma dos procedimentos para definição da bacia hidrográfica a partir dos dados RSTM. Fonte: Elaborado pelos autores (2018).

Após a delimitação da bacia hidrográfica do Igarapé Ilha do Coco foi realizado os procedimentos de rotina por meio desse software para elaboração dos mapas de hierarquia fluvial e mapa hipsométrico.

2.3 Análise morfométrica

A análise morfométrica da bacia hidrográfica do Igarapé Ilha do Coco foi feita a partir das características geométricas, da rede de drenagem e relevo, conforme Santos et al. (2012).

2.3.1 Características Geométricas

A análise da geométrica da bacia foi realizada conforme Christofoletti (1969), onde analisou-se atributos da rede de drenagem e da morfologia. A área e o perímetro da bacia foram gerados de modo automáticos a parti da função Calculate Geometry do software Arcgis 10.3.

A área da bacia variações altimétricas (projetada sobre o plano horizontal) limitada pelos divisores topográficos da bacia ou, simplesmente, a área drenada pelo conjunto de sistema fluvial (Embrapa, 2012). Nesse trabalho, foi utilizado a unidade em quilômetro (km) como medida e a delimitação da bacia hidrográfica foi realizada com o exutório por meio do programa ArcGis 10.3, utilizando-se a ferramenta Hydrology e o MDE. O mapa de hierarquia fluvial pode ser observado na figura 2.A.

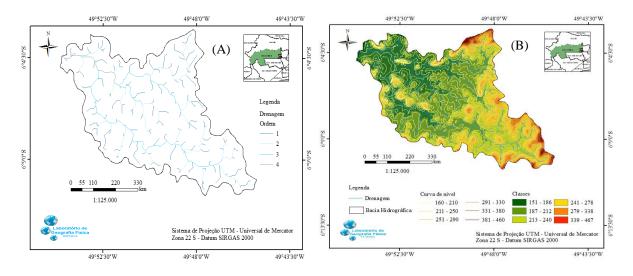


Figura 2. Mapas: A - Hierarquia fluvial; B - Hipsométrico e curva de nível da bacia hidrográfica do Igarapé Ilha de Coco.

Fonte: Elaborado pelos autores (2018).

O comprimento da bacia foi determinado com utilização da ferramenta Measure considerando a distância medida em linha reta acompanhando paralelamente o rio principal.

O fator de forma (Kf) relaciona a razão entre a largura média e o comprimento axial da bacia (da foz ao ponto mais distante do divisor de água). O fator de forma nesta pesquisa foi baseado em metodologia proposta por Cardoso et al. (2006) e pode ser calculado da seguinte forma:

$$Kf = A/C^2$$

sendo: Kf é adimensional; A = área de drenagem (km 2) e C = comprimento do eixo da bacia (km).

Para o índice de circularidade (Ic), utilizou-se classificação proposta por Schumm (1956), que descreve que valores maiores que 0,51 mostram que a bacia tende a ser mais circular, favorecendo os processos de inundação (picos de cheias). Os valores menores que 0,51 sugerem que a bacia tende a ser mais alongada, o que contribui para o processo de escoamento. Esse índice pode ser calculado da seguinte forme:

$$Ic = 12,57 \text{ x } A/P^2$$

em que: $A = \text{área (km}^2)$ e P = perímetro (km).

Para o cálculo do coeficiente de compacidade (Kc), foi utilizada a classificação proposta por Villela e Mattos (1975) que indica: quanto mais irregular for a bacia, maior será o coeficiente de compacidade. Para coeficientes acima de um, a bacia irá apresentar baixa suscetibilidade de ocorrência de inundações; por sua vez, quanto menor for o valor desse coeficiente (números próximos de zero), mais arredondada será a bacia e mais sujeita a enchentes ela estará. Esse coeficiente é um valor adimensional que varia com a forma da bacia independentemente do seu tamanho. O cálculo do coeficiente de compacidade pode ser feito a parti da equação:

$$Kc = 0.28 \times P/\sqrt{A}$$

onde: $P = \text{perímetro (km) e } A = \text{área da bacia (km}^2).$

O índice de rugosidade (IR ou Ct) relaciona a disponibilidade do escoamento hídrico superficial com seu potencial erosivo, expresso pela declividade média. Quanto maior for esse índice, maior será o risco de degradação da bacia quando as vertentes são íngremes e longas. Trata-se de um índice adimensional que corresponde à diferença altimétrica entre a foz e a maior altitude situada num determinado ponto da área da bacia, o que indica o desnível médio da bacia hidrográfica. Pode ser calculada pela seguinte equação:

$$Ct = Dd \times H$$
.

na qual: Ct = índice de rugosidade; Dd = densidade de drenagem (km/km²) e H = amplitude altimétrica (km).

O padrão de drenagem foi determinado de acordo com a descrição Christofoletti (1980), que pode ser classificados em dendrítico, anelar, radial ou paralelo.

2.3.2 Características da Rede de Drenagem

O comprimento do rio principal (L) é um parâmetro que mede a extensão do rio principal de sua nascente até a sua foz (ou exutório da bacia). Foi determinado através da ferramenta measure do ArcMap 10.3.

A hierarquia dos canais de drenagem foi obtida com a ferramenta Stream Ordem do conjunto de ferramentas Spational Analyst, com metodologia baseada em Horton (1945) modificada por Strahler (1957), na qual se observa que: os menores canais sem tributários são considerados como de primeira ordem, estendendo-se desde a nascente até a confluência; os canais de segunda ordem aparecem da confluência de dois canais de primeira ordem e só recebem afluentes de primeira ordem; os canais de terceira ordem surgem a partir da confluência dos canais de segunda ordem; e assim sucessivamente.

O total de canais de drenagem, número de canais de primeira, segunda, terça e quarta ordem e comprimento total dos canais foram determinado com auxílio da ferramenta Statistics através da tabela de atributos.

A frequência de drenagem (F) é a capacidade de uma bacia em produzir maior ou menor quantidade de água, e foi determinada da seguinte forma:

$$F = Ni/A$$

em que: F = freqüência de drenagem; $Ni = \text{número dos curso d'água e } A = \text{área da bica (km}^2)$.

Para determinação da densidade de drenagem (Dd), utilizou-se a classificação proposta por Villela e Mattos (1975), na qual a densidade de drenagem pode variar de 0,5 km/km2 em bacias de drenagem pobre a 3,5 km/km2 em bacias de drenagem ricas. É o resultado da divisão entre o comprimento total dos cursos d´àgua pela área da bacia:

$$Dd = Lt/A$$
,

onde: Lt = comprimento total dos canais (km) e A = área da bacia (km²).

O cálculo de textura da topografia (Tt) baseia-se principalmente na densidade de drenagem e foi classificado com base na metodologia proposta por França (1968), que indica três classes de Tt: grosseira (abaixo de 4), média (entre 4 e 10) e fina (acima de 10).

$$Log\ Tt = 0.219649 + 1.115\ log\ Dd,$$

sendo: Dd = densidade de drenagem.

O coeficiente de manutenção (Cm) representa uma medida de textura do solo, utilizando-se do índice Dd, e serve basicamente para determinar a área mínima necessária para a manutenção de 1 m de canal de escoamento permanente. Em que:

$$Cm = 1/Dd \times 1.000,$$

na qual: Cm = coeficiente de manutenção (m²) e Dd = densidade de drenagem (km km⁻²).

2.3.3 Características do relevo

O relevo é um fator que influencia diretamente no processo de escoamento e pode ser visualizado por meio de um mapa hipsométrico (Figura 2-B). A altimetria máxima, altimetria mínima foi determinado mediante observação da imagem RSTM da área de estudo.

A amplitude altimétrica (Hm) corresponde à diferença altimétrica entre a altitude de desembocadura e a altitude do ponto mais alto situado em qualquer lugar da divisória topográfica, dessa forma, foi determinado da seguinte forma:

$$H_{m} = P1 - P2$$

em que: H_m = amplitude altimétrica (m); P1 = ponto mais alto (m); P2 = ponto mais baixo da bacia hidrográfica (m).

3. RESULTADOS PRELIMINARES

A bacia do Igarapé Ilha do Coco apresenta uma área de aproximadamente 121,93 km2, perímetro de 66,29 km e comprimento da bacia de 20,14 km (Tabela 1). Os dados obtidos da analise morfométrica dos parâmetros geométricos, da rede de drenagem e do relevo também podem ser observados na tabela 1. É de suma importância a compreensão desses fatores para o entendimento da dinâmica do uso e ocupação da bacia.

Característica	Parâmetro	Sigla	Valores (unidade)
Geométrica	Área da bacia	A	121,93 (km ²)
Geométrica	Perímetro da bacia	P	66,29 (km)
Geométrica	Comprimento da bacia	C	20,17 (km)
Geométrica	Fator de forma	Kf	0,30 (adimensional)
Geométrica	Índice de circularidade	Ic	0,35 (adimensional)
Geométrica	Coeficiente de compacidade	Kc	1,68 (adimensional)
Geométrica	Índice de rugosidade	Ct	0,40 (adimensional)
Geométrica	Padrão de drenagem	-	dendrítico
Rede de Drenagem	Comprimento do rio principal	L	26,3628 (km)
Rede de Drenagem	Canal de drenagem (Strahler)	-	4ª ordem
Rede de Drenagem	Total de canais de drenagem	-	243 (n°)
Rede de Drenagem	Número de canais de 1ª ordem	-	123 (n°)
Rede de Drenagem	Número de canais de 2ª ordem	-	64 (n°)
Rede de Drenagem	Número de canais de 3ª ordem	-	45 (n°)
Rede de Drenagem	Número de canais de 4ª ordem	-	11 (n°)
Rede de Drenagem	Comprimento total dos canais	Lt	152,85 (km)
Rede de Drenagem	Frequência de rios	Fr	1,99 (canais km ⁻²)
Rede de Drenagem	Densidade de drenagem	Dd	1,2536 (km km ⁻²)

Rede de Drenagem	Textura de topografia	Tt	0,33 (km)
Rede de Drenagem	Coeficiente de manutenção	Cm	797,71 (m ²)
Relevo	Altimetria Máxima	$H_{mcute{a}x}$	467 (m)
Relevo	Altimetria Mínima	$H_{m in}$	151 (m)
Relevo	Altimetria Média	$H_{mcute{e}d}$	288 (m)
Relevo	Amplitude altimétrica	H_m	316 (m)
Relevo	Desvio padrão da amplitude	Σ	81 (m)
	altimétrica		

Tabela 1. Caracterização morfométrica da bacia do Igarapé Ilha de Coco.

Fonte: Fonte: Elaborado pelos autores (2018).

Segundo Tonello et al. (2006), o Kf determina a tendência do formato da bacia, e os resultados obtidos demonstram que essa bacia hidrográfica tende a apresentar formato mais alongado em virtude do baixo valor do fator de forma (0,30), ou seja, próximo de zero. Isso se deve ao fato de que, em uma bacia estreita e longa, com fator de forma baixa, há menor possibilidade de ocorrência de chuvas intensas cobrindo simultaneamente toda sua extensão (Embrapa, 2012).

A presente bacia apresenta Ic menor que 0,51, demonstrando que a bacia tende a ser menos circular e mais alongada, contribuindo para o processo de escoamento e possui Kc igual a 1,68, ou seja, a bacia apresenta baixa suscetibilidade de ocorrência de inundação por possuir uma forma menos arrendada, ou seja, a bacia tende a possuir forma mais irregular independentemente do seu tamanho, sendo coerente com o dado apresentado do Kf.

A bacia em estudo apresenta padrão de drenagem dendrítico e Ct de 0,40, este índice relaciona a disponibilidade de escoamento hídrico superficial com seu potencial erosivo, expresso pela declividade média.

O comprimento do rio principal é de aproximadamente 26,36 km, e segundo a classificação de Strahler (1957) a bacia é de quarta ordem, na qual possuem 123 canais de 1^a ordem, 64 canais de 2^a ordem, 45 canais de 3^a ordem e 11 canais de 4^a ordem, totalizando 243 canais e comprimento total dos canais (Lt) de 152,85 km.

A Fr apresenta o número de rios por quilometro quadrado de área hidrológica (Embrapa, 2012). Na bacia em estudo foi de aproximadamente 1,99 canais km-2 conectados entre si e capazes de drenar água superficial desta área. Segunda Villela e Mattos (1977) a bacia apresenta uma Dd bem drenada (1,25 km km-2). Essa variável se relaciona diretamente com os processos climáticos atuantes na área estudada, os quais influenciam o fornecimento e

o transporte de material detrítico ou indicam o grau de manipulação antrópica (SANTOS et al., 2012).

Enquanto que sua Tt apresenta-se como grosseiro (0,33 km) o que indica o grau de entalhamento topográfico realizado pelos rios (CHRISTOFOLETTI, 1969). Esse índice trata também do processo erosivo e grau de dessecação da superfície terrestre. Os resultados obtidos para o Cm indicam que para manter cada metro de canal, são necessários 797,71 m2.

Pode-se observar na figura 2.B, que o relevo apresenta altitudes que variam de 151 m na região da foz a 467 m na região das nascentes, com desvio padrão da amplitude altimétrica foi de 81 m. A variação de altitude média foi de 288 m, fator muito importante, pois influenciam as perdas de água que ocorrem na forma de evaporação e transpiração, já variações na precipitação atuarão diretamente no escoamento superficial e infiltração (Villela e Mattos, 1975). Trentin e Robaina (2005) afirmam que o mapa hipsométrico tem fundamental importância na análise da energia do relevo.

4. CONSIDERAÇÕES FINAIS

O uso da geotecnologia favorece uma melhor compreensão do sistema fluvial e pode auxiliar nas tomadas de decisões e gestão territorial. Prevenindo desastres ambientais e contribui para evitar processos erosivos.

Com base na análise morfométrica a bacia do Igarapé Ilha do Coco apresenta baixa suscetibilidade a inundação, entretanto, formas irregulares do uso e ocupação do solo ao entorno do igarapé estão provocando inundação, alagamento e contribuindo para o processo erosivo do solo, causando prejuízos diretos e indiretamente à saúde humana e ao município de Parauapebas. Nossos próximos passos será a análise hidrológica da bacia em vista de entender os elementos pontuais responsáveis pela qualidade da água.

REFERÊNCIAS BIBLIOGRÁFICAS

BELTRAME, A. V. Diagnóstico do meio ambiente físico de bacias hidrográficas: modelo de aplicação. Florianópolis: UFSC, 1994. 112 p.

CARDOSO, C. A.; DIAS, H. C. T.; SOARES, C. P. B.; MARTINS, S. V. Caracterização morfométrica da bacia hidrográfica do rio Debossan, Nova Friburgo, RJ. **Revista Árvore**, Viçosa, MG, v. 30, n. 2, p. 241-248, 2006.

CHRISTOFOLETTI, A. Análise morfométrica de bacias hidrográficas. **Noticias Geomorfológicas**, Campinas, v. 18, n. 9, p. 35-64, 1969.

CHRISTOFOLETTI, A. Geomorfologia. São Paulo, Edgard Blücher, 2ª ed., 1980.

DIAS, L. S. O.; ROCHA, G. A.; BARROS, E. U. A.; MAIA, P. H. P. Utilização do radar interferométrico para delimitação automática de bacias hidrográficas. **Bahia Análise & Dados**, Salvador, v. 4, n.2, p.265-271, 2004.

- EMBRAPA. Análise morfométrica de bacia hidrográfica: subsídio à gestão territorial, estudo de caso no alto e médio Mamanguape. (Eds.) Sâmara Rachel Ribeiro da Silva Trajano *et al.* 1ª Ed. Campinas, SP, 2012. Embrapa Gestão Territorial.
- ENVIRONMENTAL SYSTEMS RESEARCH INSTITUTE (ESRI). **ArcGIS for Desktop**. Versão. 10.3. Redlands: ESRI, 2013.
- FRANÇA, G. V. de. Interpretação fotográfica de bacias e de redes de drenagem aplicada a solos da região de Piracicaba. 1968. 151 f. Tese (Doutorado) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.
- HORTON, R. E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. **Geological Society of America Bulletin**, New York, v. 56, n. 3, p. 275–370, mar. 1945.
- LANNA, A. E. A inserção da gestão das águas na gestão ambiental. In: MUÑOZ, H. R. (Org.). **Interfaces da gestão de recursos hídricos: desafios da lei de águas de 1997**. 2. ed. Brasília, DF: Secretaria de Recursos Hídricos, 2000. p. 75-108.
- LINDNER, E. A.; GOMIG, K.; KOBIYAMA, M. Sensoriamento remoto aplicado à caracterização morfométrica e classificação do uso do solo na bacia rio do Peixe/SC. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 13., 2007, Florianópolis. Anais... Florianópolis: Inpe, 2007. p. 3405-3412.
- PARAUAPEBAS (Município). Prefeitura de Parauapebas. **Geografia:** hidrografia. Disponível em: http://www.parauapebas.pa.gov.br/index.php/nossa-historia Acessado em: 15 Março 2018.
- RODRIGUEZ; ADAMI. **Técnicas fundamentais para o estudo de bacia hidrográfica**. In: VENTURI. L. A. B. (Org.) Praticando Geografia: técnicas de campos e laboratório. Oficina de Texto, São Paulo, 2005.
- SANTOS, A. M.; TARGA, M. S.; BATISTA, G. T.; DIAS, N. W. Análise morfométrica das sub-bacias hidrográficas Perdizes e Fojo no município de Campos do Jordão, SP, Brasil. **Ambi-Agua**, Taubaté, v. 7, n. 3, p. 195-211, 2012.
- SCHUMM, S. A. Evolution of drainage systems and slopes in badlands of Perth Amboy. **Geological Society of America Bulletin**, New York, v. 67, n. 5, p. 597-646, May 1956.
- SOBRINHO, Alves Sobrinho; OLIVEIRA, Paulo T. S.; RODRIGUES, Dulce B. B.; AYRES, F. M. Delimitação automática de bacias hidrográficas utilizando dados SRTM. **Engenharia Agrícola**, Jaboticabal, v. 30, n. 1, p. 46-47, jan/fev. 2010.
- STRAHLER, A. N. Quantitative analysis of watershed geomorphology. **Transactions Amarican Geophysical Union**, Washington, v. 38, n. 6, p. 913-920, 1957.
- TONELLO, K. C.; DIAS, H. C. T.; SOUZA, A. L.; RIBEIRO, C. A. A. S.; LEITE, F. P. Morfometria da bacia hidrográfica da Cachoeira das Pombas, Guanhães MG. **Revista Árvore**, Viçosa, MG, v. 30, n. 5, p. 859-857, 2006.
- TRENTIN, R.; ROBAINA, L. E. de S. Metodologia para mapeamento geoambiental no Oeste do Rio Grande do Sul. In: SIMPOSIO BRASILEIRO DE GEOGRAFIA FISICA APLICADA, 11., 2005, São Paulo. **Anais...** São Paulo: Ed. da USP, 2005. P. 3606-3615.
- VILLELA, S. M.; MATTOS, A. **Hidrologia aplicada**. São Paulo: Mc Graw-Hill do Brasil, 1975.